sinx=1+tan22x2tan2x
cosx=1+tan22x1−tan22x
tanx=1−tan22x2tan2x
asinx+bcosx=a2+b2sin(x+y),tany=ab
sinx=sin(x+2kπ)
cosx=cos(x+2kπ)
tanx=tan(x+2kπ)
sin2x+cos2x=1
sin(x+π)=−sinx
cos(x+π)=−cosx
tan(x+π)=tanx
sin(−x)=−sinx
cos(−x)=cosx
tan(−x)=−tanx
sin(π−x)=sinx
cos(π−x)=−cosx
tan(π−x)=−tanx
sin(2π−x)=cosx
cos(2π−x)=sinx
sin(2π+x)=cosx
cos(2π+x)=−sinx
cos(x−y)=cosxcosy+sinxsiny
cos(x+y)=cosxcosy−sinxsiny
sin(x+y)=sinxcosy±cosxsiny
tan(x+y)=1−tanxtanytanx+tany
tan(x−y)=1+tanxtanytanx−tany
sinx+siny=2sin2x+ycos2x−y
sinx−siny=2cos2x+ysin2x−y
cosx+cosy=2cos2x+ycos2x−y
cosx−cosy=−2sin2x+ysin2x−y
tanx±tany=cosxcosysin(x±y)
cotx±coty=±sinxsinysin(x±y)
sinxcosy=21[sin(x+y)+sin(x−y)]
cosxsiny=21[sin(x+y)−sin(x−y)]
cosxcosy=21[cos(x+y)+cos(x−y)]
sinxsiny=21[cos(x+y)−cos(x−y)]
sin2x=2sinxcosx
cos2x=2cos2x−1=1−2sin2x=cos2x−sin2x
tan2x=1−tan2x2tanx