常用公式集

三角函数常用公式

  • sinx=2tanx21+tan2x2\Large \sin x = \frac{2\tan\frac{x}{2}}{1+\tan^2\frac{x}{2}}

  • cosx=1tan2x21+tan2x2\Large \cos x = \frac{1-\tan^2\frac{x}{2}}{1+\tan^2\frac{x}{2}}

  • tanx=2tanx21tan2x2\Large \tan x = \frac{2\tan\frac{x}{2}}{1-\tan^2\frac{x}{2}}

  • asinx+bcosx=a2+b2sin(x+y),tany=ba\Large a\sin x + b\cos x = \sqrt{a^2+b^2}\sin(x+y), \tan y = \frac{b}{a}

  • sinx=sin(x+2kπ)\Large \sin x = \sin(x+2k\pi)

  • cosx=cos(x+2kπ)\Large \cos x = \cos(x+2k\pi)

  • tanx=tan(x+2kπ)\Large \tan x = \tan(x+2k\pi)

  • sin2x+cos2x=1\Large \sin^2 x + \cos^2 x = 1

  • sin(x+π)=sinx\Large \sin(x+\pi) = -\sin x

  • cos(x+π)=cosx\Large \cos(x+\pi) = -\cos x

  • tan(x+π)=tanx\Large \tan(x+\pi) = \tan x

  • sin(x)=sinx\Large \sin(-x) = -\sin x

  • cos(x)=cosx\Large \cos(-x) = \cos x

  • tan(x)=tanx\Large \tan(-x) = -\tan x

  • sin(πx)=sinx\Large \sin(\pi-x) = \sin x

  • cos(πx)=cosx\Large \cos(\pi-x) = -\cos x

  • tan(πx)=tanx\Large \tan(\pi-x) = -\tan x

  • sin(π2x)=cosx\Large \sin(\frac{\pi}{2}-x) = \cos x

  • cos(π2x)=sinx\Large \cos(\frac{\pi}{2}-x) = \sin x

  • sin(π2+x)=cosx\Large \sin(\frac{\pi}{2}+x) = \cos x

  • cos(π2+x)=sinx\Large \cos(\frac{\pi}{2}+x) = -\sin x

  • cos(xy)=cosxcosy+sinxsiny\Large \cos(x-y) = \cos x \cos y + \sin x \sin y

  • cos(x+y)=cosxcosysinxsiny\Large \cos(x+y) = \cos x \cos y - \sin x \sin y

  • sin(x+y)=sinxcosy±cosxsiny\Large \sin(x+y) = \sin x \cos y \pm \cos x \sin y

  • tan(x+y)=tanx+tany1tanxtany\Large \tan(x+y) = \frac{\tan x + \tan y}{1-\tan x \tan y}

  • tan(xy)=tanxtany1+tanxtany\Large \tan(x-y) = \frac{\tan x - \tan y}{1+\tan x \tan y}

  • sinx+siny=2sinx+y2cosxy2\Large \sin x + \sin y = 2\sin\frac{x+y}{2}\cos\frac{x-y}{2}

  • sinxsiny=2cosx+y2sinxy2\Large \sin x - \sin y = 2\cos\frac{x+y}{2}\sin\frac{x-y}{2}

  • cosx+cosy=2cosx+y2cosxy2\Large \cos x + \cos y = 2\cos\frac{x+y}{2}\cos\frac{x-y}{2}

  • cosxcosy=2sinx+y2sinxy2\Large \cos x - \cos y = -2\sin\frac{x+y}{2}\sin\frac{x-y}{2}

  • tanx±tany=sin(x±y)cosxcosy\Large \tan x \pm \tan y = \frac{\sin(x \pm y)}{\cos x \cos y}

  • cotx±coty=±sin(x±y)sinxsiny\Large \cot x \pm \cot y = \pm\frac{\sin(x \pm y)}{\sin x \sin y}

  • sinxcosy=12[sin(x+y)+sin(xy)]\Large \sin x \cos y = \frac{1}{2}[\sin(x+y)+\sin(x-y)]

  • cosxsiny=12[sin(x+y)sin(xy)]\Large \cos x \sin y = \frac{1}{2}[\sin(x+y)-\sin(x-y)]

  • cosxcosy=12[cos(x+y)+cos(xy)]\Large \cos x \cos y = \frac{1}{2}[\cos(x+y)+\cos(x-y)]

  • sinxsiny=12[cos(x+y)cos(xy)]\Large \sin x \sin y = \frac{1}{2}[\cos(x+y)-\cos(x-y)]

  • sin2x=2sinxcosx\Large \sin2x = 2\sin x\cos x

  • cos2x=2cos2x1=12sin2x=cos2xsin2x\Large \cos2x = 2\cos^2x-1 = 1-2\sin^2x = \cos^2x-\sin^2x

  • tan2x=2tanx1tan2x\Large \tan2x = \frac{2\tan x}{1-\tan^2x}

双曲函数的7个常用公式

  • sh(x+y)=shxchy+chxshy\Large \sh(x+y) = \sh x \ch y + \ch x \sh y

  • sh(xy)=shxchychxshy\Large \sh(x-y) = \sh x \ch y - \ch x \sh y

  • ch(x+y)=chxchy+shxshy\Large \ch(x+y) = \ch x \ch y + \sh x \sh y

  • ch(xy)=chxchyshxshy\Large \ch(x-y) = \ch x \ch y - \sh x \sh y

  • ch2xsh2x=1\Large \ch^2x-\sh^2x = 1

  • sh2x=2shxchx\Large \sh 2x = 2\sh x \ch x

  • ch2x=ch2x+sh2x\Large \ch 2x = \ch^2x+\sh^2x

基本初等函数导数公式

  • (C)=0\Large (C)'=0

  • (xn)=nxn1\Large (x^n)'=nx^{n-1}

  • (ax)=axlna\Large (a^x)'=a^x\ln a

  • (ex)=ex\Large (e^x)'=e^x

  • (logax)=1xlna\Large (\log_a{x})'=\frac{1}{x\ln a}

  • (lnx)=1x\Large (\ln x)' = \frac{1}{x}

  • (sinx)=cosx\Large (\sin x)'=\cos x

  • (cosx)=sinx\Large (\cos x)'=-\sin x

  • (tanx)=sec2x\Large (\tan x)'=\sec^2 x

  • (cotx)=csc2x\Large (\cot x)'=-\csc^2 x

  • (secx)=secxtanx\Large (\sec x)'=\sec x\tan x

  • (cscx)=cscxcotx\Large (\csc x)'=-\csc x\cot x

  • (arcsinx)=11x2\Large (\arcsin x)' =\frac{1}{\sqrt{1-x^2}}

  • (arccosx)=11x2\Large (\arccos x)' =-\frac{1}{\sqrt{1-x^2}}

  • (arctanx)=11+x2\Large (\arctan x)' =\frac{1}{1+x^2}

  • (arccotx)=11+x2\Large (arc\cot x)' =-\frac{1}{1+x^2}

  • (shx)=chx\Large (\sh x)'=\ch x

  • (chx)=shx\Large (\ch x)'=\sh x

  • (thx)=1ch2x\Large (\th x)'=\frac{1}{\ch^2x}

  • (arshx)=11+x2\Large (ar\sh x)'=\frac{1}{\sqrt{1+x^2}}

  • (archx)=x21\Large (ar\ch x)'=\sqrt{x^2-1}

  • (arthx)=1x2\Large (ar\th x)'=\sqrt{1-x^2}

常见函数高阶导数公式

  • (ex)(n)=ex\Large (e^x)^{(n)}=e^x

  • (sinx)(n)=sin(x+n2π)\Large (\sin x)^{(n)}=\sin(x+\frac{n}{2}\pi)

  • (cosx)(n)=cos(x+n2π)\Large (\cos x)^{(n)}=\cos(x+\frac{n}{2}\pi)

  • [ln(1+x)](n)=(1)n1(n1)!(1+x)n\Large [\ln(1+x)]^{(n)}=(-1)^{n-1}\frac{(n-1)!}{(1+x)^n}

  • (xμ)(n)=μ(μ1)(μ2)...(μn+1)xμn\Large (x^{\mu})^{(n)}=\mu(\mu-1)(\mu-2)...(\mu-n+1)x^{\mu-n}

  • μ=n\mu=n 时,

(xμ)(n)=(xn)(n)=n!\Large (x^{\mu})^{(n)}=(x^n)^{(n)}=n!

上一次编辑: 11/2/2018, 3:02:08 PM